SOUND WAVES

- (i) Longitudinal displacement of sound wave $\xi = A \sin (\omega t kx)$
- (ii) Pressure excess during travelling sound wave

$$P_{ex} = -B \frac{\partial \xi}{\partial x} \text{ (it is true for travelling} \\ = (BAk) \cos(\omega t - kx) \\ \text{wave as well as standing waves)} \\ \text{Amplitude of pressure excess} = BAk \\ \text{(iii)} \qquad \text{Speed of sound } C = \sqrt{\frac{E}{\rho}} \\ \text{Where } E = Ellastic modulus for the medium} \\ \rho = \text{density of medium} \\ - \qquad \text{for solid} \qquad C = \sqrt{\frac{Y}{\rho}} \\ \end{cases}$$

Get More Learning Materials Here :

where Y = young's modulus for the solid

- for liquid $C = \sqrt{\frac{B}{\rho}}$ where B = Bulk modulus for the liquid - for gases $C = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{\gamma RT}{M_0}}$ where M_o is molecular wt. of the gas in (kg/mole)

Intensity of sound wave :

$$< I > = 2\pi^2 f^2 A^2 \rho v = \frac{P_m^2}{2\rho v}$$
 $< I > \propto P_m^2$

(iv) Loudness of sound : $L = 10 \log_{10} \left(\frac{I}{I_0} \right) dB$

where $I_0 = 10^{-12} \text{ W/m}^2$ (This the minimum intensity human ears can listen)

Intensity at a distance r from a point source = $I = \frac{P}{4\pi r^2}$

Interference of Sound Wave

 $P_1 = p_{m1} \sin (\omega t - kx_1 + \theta_1)$ if $P_2 = p_{m_2} \sin (\omega t - kx_2 + \theta_2)$ resultant excess pressure at point O is $p = P_1 + P_2$ $p = p_0 \sin(\omega t - kx + \theta)$ $p_{0} = \sqrt{p_{m_{e}}^{2} + p_{m_{0}}^{2} + 2p_{m_{e}}p_{m_{0}}\cos\phi}$ where $\phi = [k (x_2 - x_1) + (\theta_1 - \theta_2)]$ $I = I_1 + I_2 + 2\sqrt{I_1 I_2}$ and For constructive interference (i) $\phi = 2n\pi$ and $\Rightarrow p_0 = p_{m1} + p_{m2}$ (constructive interference) For destructive interfrence (ii) ϕ = (2n+ 1) π and $\Rightarrow p_0 = |p_{m1} - p_{m2}|$ (destructive interference) If ϕ is due to path difference only then $\phi = \frac{2\pi}{2} \Delta x$. Condition for constructive interference : $\Delta x = n\lambda$ Condition for destructive interference : $\Delta x = (2n + 1) \frac{\lambda}{2}$. Page # 78

(a) If
$$p_{m1} = p_{m2}$$
 and $\theta = \pi, 3\pi, ...$
resultant $p = 0$ i.e. no sound
(b) If $p_{m1} = p_{m2}$ and $\phi = 0$, $2\pi, 4\pi, ...$
 $p_0 = 2p_m \& I_0 = 4I_1$
 $p_0 = 2p_{m1}$
Close organ pipe :
 $f = \frac{v}{4\ell}, \frac{3v}{4\ell}, \frac{5v}{4\ell}, ..., \frac{(2n+1)v}{4\ell}$ $n = overtone$
Open organ pipe :
 $f = \frac{v}{2\ell}, \frac{2v}{2\ell}, \frac{3v}{2\ell}, ..., \frac{nV}{2\ell}$
Beats : Beatsfrequency = $|f_1 - f_2|$.
Doppler's Effect
The observed frequency, $f' = f\left(\frac{v - v_0}{v - v_s}\right)$
and Apparent wavelength $\lambda' = \lambda\left(\frac{v - v_s}{v}\right)$

Get More Learning Materials Here : 🌉